ACKNOWLEDGEMENT

UBC’s Point Grey Campus is located on the traditional, ancestral, and unceded territory of the xwməθkwəy̓əm (Musqueam) people. The land it is situated on has always been a place of learning for the Musqueam people, who for millennia have passed on their culture, history, and traditions from one generation to the next on this site.

COURSE INFORMATION

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Code Number</th>
<th>Credit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of Epidemiological Methods</td>
<td>Class: SPPH 504, section 007 (Tue 9 am - 12 pm)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lab: SPPH 504, section T01 (Thu 10 am - 12 pm): Starting from 9th Sept Both in-person sessions.</td>
<td></td>
</tr>
</tbody>
</table>

PREREQUISITES

- SPPH400 Statistics for Health Research, and
- SPPH500 Analytical Methods in Epidemiological Research, and
- SPPH502 Epidemiological Methods I, and
- one of
 - SPPH503 Epidemiological Methods II, or
 - SPPH506 Quantitative Research Methods, or
 - SPPH519 Qualitative Methods for Health Research Design, or
 - SPPH530 Epidemiology of Occupational and Environmental Health

Strongly encourages students to have fluency in R. The time commitment can exponentially increase if the student is also trying to learn data wrangling with R at the same time.

CONTACTS

<table>
<thead>
<tr>
<th>Course Instructor(s)</th>
<th>Contact Details</th>
<th>Office Location</th>
<th>Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehsan Karim</td>
<td>ehsan.karim@ubc.ca</td>
<td>By appointments</td>
<td>By appointments, or as posted on canvas.</td>
</tr>
</tbody>
</table>

COURSE INSTRUCTOR BIOGRAPHICAL STATEMENT

Dr. M. Ehsan Karim is an Assistant Professor in Health Data Science at the UBC School of Population and Public Health (SPPH), a Scientist & a Biostatistician at the Centre for Health Evaluation and Outcome Sciences (CHEOS), an associate member of the Department of Statistics (UBC) and a Michael Smith Foundation for Health Research (MSFHR) Scholar. He obtained his PhD in Statistics from the University of British Columbia, and completed his postgraduate training in the Department of Epidemiology, Biostatistics, and Occupational Health at McGill University. His current research focuses on causal inference, real-world observational data analyses, and applications of machine learning approaches in epidemiologic studies.

OTHER INSTRUCTIONAL STAFF

Teaching team includes GTAs: Belal Hossain (computing lab), Fardowsa Yusuf (sci wri/content update), Kamila Romanowski (sci wri/content update) and GAA: Dahn Jeong (sci wri OER project).
communicate with the computing TA, come to weekly mandatory labs and specified office hours (as announced in Canvas). If you need further support, contact the course instructor, and additional office hours will be assigned accordingly. Do not email the TAs directly without copying the instructor.

COURSE STRUCTURE

The purpose of this course is to provide students with learning opportunities to understand fundamental epidemiological concepts through the application of methods using population and public health datasets. The purpose is also to introduce students to emerging epidemiological methodologies that are frequently being applied to population and public health-related research questions in prestigious epidemiology journal publications.

SCHEDULE OF TOPICS

<table>
<thead>
<tr>
<th>Week #</th>
<th>Methods & Reviews</th>
<th>Scientific Writing</th>
<th>Lab topics</th>
<th>Weekly Submission deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td># 1 (Week of Sept 9th)</td>
<td>(no class on Tue)</td>
<td>Components of a Research Topic (PICOT & FINER)</td>
<td>(Class shifted to Thu only for this week) Overview of the course and final project</td>
<td>(no assignment submissions)</td>
</tr>
<tr>
<td># 2 (Week of Sept 14th & 16th)</td>
<td>Complex survey designs & data sources</td>
<td>Creating a statistical analysis plan (SAP)</td>
<td>Data wrangling in R (complete lab exercise).</td>
<td>Sept 13, Mon (4 pm): [i] pre-class quiz</td>
</tr>
<tr>
<td># 4 (Week of Sept 28th)</td>
<td>Adjustment strategies according to research goal</td>
<td>Manuscript writing: Methods section</td>
<td>(no lab on Thu)</td>
<td>Sept 27, Mon (4 pm): [i] pre-class quiz, [ii] SAP (with Tables 1 and 2 without survey features).</td>
</tr>
<tr>
<td># 5 (Week of Oct 5th & 7th)</td>
<td>Analysis of complex survey data</td>
<td>Presenting tables and figures</td>
<td>R lab on analysis of complex survey data (complete lab exercise)</td>
<td>Oct 4, Mon (4 pm): [i] pre-class quiz, [ii] peer-review for SAP.</td>
</tr>
<tr>
<td># 6 (Week of Oct 12th 14th)</td>
<td>Missing-data analysis</td>
<td>Manuscript writing: Results section</td>
<td>R lab on missing data analysis (complete lab exercise)</td>
<td>Oct 11, Mon (4 pm): [i] pre-class quiz.</td>
</tr>
<tr>
<td>Week #</td>
<td>Methods & Reviews</td>
<td>Scientific Writing</td>
<td>Lab topics</td>
<td>Weekly Submission deadlines</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td># 7 (Week of Oct 19th & 21st)</td>
<td>Propensity score in survey data analysis</td>
<td>Peer-reviewing/letter to the editor</td>
<td>R lab on propensity score modelling (complete lab exercise)</td>
<td>Oct 18, Mon (4 pm): [i] pre-class quiz, [i] Writing assignment WA 1 (Methods + Results)</td>
</tr>
<tr>
<td># 9 (Week of Nov 2nd)</td>
<td>• Mid-term Exam (Nov 2nd 9 am - 12 pm)</td>
<td>(No lab on Thu)</td>
<td>(no assignment submissions)</td>
<td></td>
</tr>
<tr>
<td># 10 (Week of Nov 9th & 11th)</td>
<td>Machine learning basics</td>
<td>Presenting at seminars and conferences</td>
<td>R lab on machine learning (complete lab exercise)</td>
<td>Nov 8, Mon (4 pm): [i] pre-class quiz</td>
</tr>
<tr>
<td># 11 (Week of Nov 16th & 18th)</td>
<td>Integration of machine learning in causal inference</td>
<td>Responding to reviewer’s comments</td>
<td>R lab on general causal inference methods (complete lab exercise)</td>
<td>Nov 15, Mon (4 pm): [i] pre-class quiz, [ii] WA 2 (Introduction + Discussion sections), [iii] slide submission</td>
</tr>
<tr>
<td># 12 (Week of Nov 23rd & 25th)</td>
<td>• In-class presentation of the final project</td>
<td>(multiple presentation sessions: Tue and Thu)</td>
<td>(no assignment submissions)</td>
<td>Nov 22, Mon (4 pm): [i] Peer-review for WA 2.</td>
</tr>
<tr>
<td># 13 (Week of Nov 30th & Dec 2nd)</td>
<td>Discussion and review Course evaluation</td>
<td>Common issues with WA 2 Authorship</td>
<td>Discussion and review (no exercise)</td>
<td>Final paper submission deadline: Dec 10 (Fri 4 pm).</td>
</tr>
</tbody>
</table>

LEARNING OUTCOMES

By the end of this course, students will develop practical skills to:

- Design an appropriate study for a population/public health research question that will help reduce bias;
- Create an analytic dataset from a complex population/public health survey to answer an epidemiological research question, including statistical programming/coding and data management/documentation skills;
- Recognize the scenarios where various data analysis methods are appropriate to answer a research question;
- Apply an appropriate data analysis method to answer a population/public health research question;
- Interpret estimates and conclusions from data analysis methods;
- Describe the assumptions and limitations of data analysis methods;
- Communicate an epidemiological study (design, analytic method, findings and discussion (including issues related to limitations, biases)) in a format suitable for submission to an academic health journal; and
- Present an epidemiological study and analytic method in a format suitable for an academic health conference.

LEARNING ACTIVITIES

1. **Pre/post-class survey and in-class quizzes**: The surveys consist of several multiple-choice questions assessing understanding of readings/class materials (published academic papers and/or textbook chapters describing advanced epidemiologic methods). Readings are focused on the application of an epidemiological method to a population/public health issue/research question that will be explored further in class through lectures, instructor demonstrations, in-class student application activities.

2. **Weekly lab data analysis activities**: Students will complete in-lab data analysis exercises to apply concepts covered in pre-class reading materials, and in instructor lectures/in-class demonstrations.

3. **Statistical Analysis Plan/research proposal related to final project**: Students will propose their own research questions through a statistical analysis plan (SAP). Students will be evaluated on the design of a study and choice of analytic method to answer their research question that reduces bias.

4. **Scientific Writing assignments**: Scientific writing assignments on given topics. These assignments will deal with the following sections of a manuscript: introduction, methods, results and discussion.

5. **Mid-term exam**: An in-class mid-term written examination (based on topics covered before the mid-term).

6. **In-class presentation**: In-class presentation: Students will present the analytic approach for their research question with a focus on the justification of the choice of approach, in a format suitable for an academic health conference.

7. **Final Paper**: The Final Paper will have 5 sections: (i) objective and motivation of the study with a brief literature review, (ii) methods description, (iii) bivariable and multivariable results, (iv) discussion outlining strengths and limitations of the study, and (v) appendix with project/statistical analysis coding.

LEARNING MATERIALS
SPPH 504/007: Application of Epidemiological Methods Syllabus w2021

Required pre-class and weekly reading lists (published papers or textbook chapters) will be updated in the Canvas each week. There is no required textbook. The following textbooks are suggested for further reading (also available via UBC library):

ASSESSMENTS OF LEARNING

The course will involve pre-class reading materials (pre-reading, video lecture or journal article focused on the application of epidemiological methods), lectures based on the discussion of the pre-class reading content, and in-class activities and course assignments focused on the application of epidemiological methods. Although students will gain some expertise in statistical computation and programming, this course is focused on the application of epidemiologic analytic methods. Students will be evaluated based on the following elements: (a) understanding of key epidemiologic concepts, (b) understanding of analytic approaches to reduce study biases, (c) the application of epidemiological methods to population and public health research questions, and (d) the appropriate interpretation of analytic estimates from analytic output.

1. Pre-class survey 10%
2. In-class quizzes and activities 5%
3. Lab data analysis activities 15%
4. Statistical Analysis Plan/research proposal related to the final project Pass/Fail (0%)
5. Scientific Writing Assignments 10%
6. Mid-term exam 20%
7. In-class presentation 5%
8. Peer-Review 10%
9. Final Paper, and addressing peer-review comments 25%

Peer-review quality will be judged by whether or not the reviewer can identify potential weaknesses of the work they are reviewing, express them in a professional manner, and can suggest a practical way forward (if possible).

Late Assignments: Pre-class/in-class/weekly survey answers, Assignments, and the Final Paper must be submitted via Canvas. Typically, no late submissions will be accepted. Extensions of the due date for the assignments will be considered pending extenuating circumstances with the approval of the instructor. The instructor will require documentation of extenuating circumstances (medical certificates, etc.). Assignments submitted later than the due date will be penalized 10% of the possible grade for each day past due.

UNIVERSITY POLICIES

UBC provides resources to support student learning and to maintain healthy lifestyles but recognizes that sometimes crises arise and so there are additional resources to access including those for survivors of sexual violence. UBC values respect for the person and ideas of all members of the academic community. Harassment and discrimination are not tolerated nor is suppression of academic freedom. UBC provides appropriate accommodation for students with disabilities and for
religious observances. UBC values academic honesty and students are expected to acknowledge the ideas generated by others and to uphold the highest academic standards in all of their actions.

Details of the policies and how to access support are available on the UBC Senate website.

OTHER COURSE POLICIES

Plagiarism: Students are expected to review the Student Discipline section of the UBC Calendar and know what constitutes plagiarism and academic misconduct, and that such activities are subject to penalty.

Grading: This course has very specific rubrics for scientific writing. For everything else, we follow the following strategy: Adapted from the UBC Department of Educational Studies, Graduate Course Grading Policy, D. Pratt:

- A Level (80% to 100%): A+ is from 90% to 100%: It is reserved for exceptional work that significantly exceeds course expectations. Also, achievement must satisfy all the conditions below. A is from 85% to 89%: A mark of this order suggests a very high level of performance on all criteria used for evaluation. Contributions deserving an A are distinguished in virtually every aspect. They show that the individual (or group) significantly shows initiative, creativity, insight, and probing analysis where appropriate. Further, the achievement must show careful attention to course requirements as established by the instructor. A- is from 80% to 84%: It is awarded for the high quality of performance, no problems of any significance, and fulfilment of all course requirements.

- B Level (68% to 79%): This category of achievement is typified by adequate but unexceptional performance when the criteria of assessment are considered. It is distinguished from A-level work by problems such as one of the more significant errors in understanding, superficial representation or analysis of key concepts, the absence of any special initiatives, or lack of coherent organization or explanation of ideas. The level of B work is judged by the severity of the difficulties demonstrated. B+ is from 76% to 79%, B is from 72% to 75%, and B- is from 68% to 71%

- C Level (55% to 67%): Although a C+, C, or C- grade may be given in a graduate course, the Faculty of Graduate Studies considers 68% as a minimum passing grade for doctoral graduate students.

LEARNING ANALYTICS

Learning analytics includes the collection and analysis of data about learners to improve teaching and learning. This course will be using Canvas that capture data about student’s activity and provide information that can be used to improve the quality of teaching and learning. In this course, the instructor plans to use analytics data to:

- View overall class progress
- Track students’ progress in order to provide them with personalized feedback
- Review statistics on course content being accessed to support improvements in the course
- Assess the student’s participation in the course.

LEARNING RESOURCES
• All course materials (lecture slides, pre-class readings and video, assignments) will be posted on the Canvas course website.

• Required pre-class/weekly readings (listed at the end of this document) can be downloaded from either the Canvas course website or from the UBC library website.

• Access to a computer with R software (R, RStudio, R markdown, free of charge) is necessary for all course work. Students need to bring their own laptop computer to class with the R software installed. Course instruction will be provided strictly in R.

ONLINE LEARNING FOR INTERNATIONAL STUDENTS

During this pandemic, the shift to online learning has greatly altered teaching and studying at UBC, including changes to health and safety considerations. Keep in mind that some UBC courses might cover topics that are censored or considered illegal by non-Canadian governments. This may include, but is not limited to, human rights, representative government, defamation, obscenity, gender or sexuality, and historical or current geopolitical controversies. If you are a student living abroad, you will be subject to the laws of your local jurisdiction, and your local authorities might limit your access to course material or take punitive action against you. UBC is strongly committed to academic freedom, but has no control over foreign authorities (please visit http://www.calendar.ubc.ca/vancouver/index.cfm?tree=3,33,86,0 for an articulation of the values of the University conveyed in the Senate Statement on Academic Freedom). Thus, we recognize that students will have legitimate reason to exercise caution in studying certain subjects. If you have concerns regarding your personal situation, consider postponing taking a course with manifest risks, until you are back on campus or reach out to your academic advisor to find substitute courses. For further information and support, please visit: http://academic.ubc.ca/support-resources/freedom-expression

COPYRIGHT

All materials of this course (course handouts, lecture slides, assessments, course readings, etc.) are the intellectual property of the Course Instructor or licensed to be used in this course by the copyright owner. Redistribution of these materials by any means without the permission of the copyright holder(s) constitutes a breach of copyright and may lead to academic discipline.

The instructor/TAs do not permit students to record class sessions/labs. The class/TA sessions will be recorded by the instructor/TAs, and only the necessary parts will be released within the class for viewing outside of the class sessions. If you have an objection about parts of these recordings, contact the instructor immediately.

Version: Sept 2, 2021