Course Syllabus for
SPPH 500 – Analytical Methods in Epidemiological Research
Section 007, January, 2020

Instructor: Hubert Wong
Email: hubert.wong@ubc.ca
Office (UBC): SPPH 145
Phone (St. Paul’s Hospital): 604-806-8443

Calendar Description
Basic epidemiological designs as a framework for commonly used biostatistical techniques such as the Mantel-Haenszel, chi-squared, linear and logistic regression, and survival analysis. Computer packages will be available for computation of assignments.

Learning Objectives
This course is intended to provide a solid understanding of the concepts, principles, and interpretation of multivariable regression modeling. These key principles will be covered using a combination of examples, review of journal articles and relevant case studies. Students will be required to effectively communicate statistical concepts, interpret statistical models, critically evaluate the application of these models, and present findings. On completion of this course the student should be able to:

1. Distinguish between different objectives of a regression analysis;
2. Understand the principles of model development for each objective;
3. Relate regression models (linear, logistic, Poisson, survival) to appropriate types of health outcome data;
4. Interpret parameters of each regression model and summarize results for scientific journals;
5. Critically evaluate the analytic methods sections in health care literature;
6. Communicate effectively with statistical practitioners on regression methods.

Pre-requisites
SPPH 400 (or SPPH 567), SPPH 502, or permission of the Instructor

Course Format
In-class seminars Mondays 1:00pm – 4:00pm from January 6, 2020 to March 31, 2020 excluding February 17, 2020.

Statistical software will be used in-class to support illustration of the modeling process; students are encouraged to use statistical software to facilitate learning but assignments will not require its use.
Reference Texts
Vittinghoff E, Glidden D, Shiboski S and McCulloch C. *Regression Methods in Biostatistics, 2nd ed.* Springer 2011. *(primary course text; available online through the UBC library)*

Assessment, Evaluation and Grading

In-class participation (20%): Students are expected to have read the designated literature prior to class and be prepared to contribute actively to the discussion.

Class summaries (50%): Following each class, students will prepare a summary (no more than 1000 words, say) of the most important 3 to 5 “take-home points” from the class. Each point should be accompanied by a short explanation of the underlying rationale. For example, the point “Do not choose adjustment variables for a causal model based on p-values” should be accompanied by an explanation such as “The p-value does not tell you whether bias is introduced by including/excluding the variable.” These summaries are due 11:59pm on the Thursday following the class (the aim is to have the summaries marked and returned prior to the next class). Late assignments are not accepted. Please submit in a Microsoft Word compatible format to enable addition of comments. Assessment of these summaries will be based on accuracy of points made and clarity of exposition.

Final project (30%): The final project will be a critique of a published journal article (individually chosen by each student; approved by the instructor) that involved a substantial amount of regression modeling. It is comprised of a presentation in the last class and a write-up due one week after the last class.

Course Topics and Required Readings

Lecture 1: (Jan 6)
- Introduction: Course outline, policies
- Review of basic concepts and definitions in statistics (population, sample, parameter, statistic/estimator, etc)
- Key objectives of statistical modeling (data summarization, prediction, causal effect estimation)
- General approach and principles in data analysis, role of design and sampling

Lecture 2: (Jan 13)
- Simple and multiple linear regression, basics
 Ref: Vittinghoff 4.1 – 4.2
- Analysis of variance and analysis of covariance
 Ref: Vittinghoff 4.3

Lecture 3: (Jan 20)
- Modeling variable interactions/effect modification
 Ref: Vittinghoff 4.6
• Data transformations; guidelines and impact on model interpretation
 Ref: Vittinghoff 4.7

Lecture 4: (Jan 27)
• Principles of variable selection for estimating causal effects: confounding bias,
 causal graphs, adjusted effect, multicollinearity considerations, direct vs indirect
 effects
 Ref: Vittinghoff 10.2 – 10.6, Rothman 12
• Principles of variable selection for prediction: prediction errors, over-fitting and
 bias-variance trade-offs, AIC, cross-validation, practical considerations
 Ref: Vittinghoff 10.1, 10.2 – 10.6
• Interpreting and reporting linear regression models

Lecture 5: (Feb 3)
• Logistic regression, basics
 Ref: Vittinghoff 5.1 – 5.4, 5.8
• Regression coefficients; relationship to contingency tables
• Assumptions and categorical variables
 Ref: Vittinghoff 5.1

Lecture 6: (Feb 10)
• Logistic regression case study - estimating a causal effect, omitted variable bias
• Logistic regression case study – developing a predictive model, sensitivity,
 specificity, ROC curves
 Ref: Vittinghoff 5.2.5 – 5.2.6

Lecture 7: (Feb 24)
• Matched case-control studies; conditional logistic regression
 Ref: Vittinghoff 5.3
• Poisson regression
 Ref: Vittinghoff 8.1 – 8.3

Lecture 8: (Mar 3)
• Time to event data, censoring, hazard rates & ratios, Kaplan-Meier method
 Ref: Vittinghoff 3.5
• Cox proportional hazards model
 Vittinghoff 6.1, 6.2, 6.4

Lecture 9: (Mar 10)
• Survival models continued, time-dependent exposures, more on censoring
 Vittinghoff 6.3, 6.6 – 6.9
• Accounting for non-simple random sampling
 Ref: Vittinghoff 12.1 – 12.6

Lecture 10: (Mar 17)
• Modeling hierarchical/clustered/longitudinal data, basics
 Ref: Vittinghoff 7.1 – 7.12

Lecture 11: (Mar 24)
• Approaches to missing data
 Ref: Vittinghoff 11.1 – 11.9
UBC’s values and policies

UBC provides resources to support student learning and to maintain healthy lifestyles but recognizes that sometimes crises arise and so there are additional resources to access including those for survivors of sexual violence. UBC values respect for the person and ideas of all members of the academic community. Harassment and discrimination are not tolerated nor is suppression of academic freedom. UBC provides appropriate accommodation for students with disabilities and for religious and cultural observances. UBC values academic honesty and students are expected to acknowledge the ideas generated by others and to uphold the highest academic standards in all of their actions. Details of the policies and how to access support are available at: https://senate.ubc.ca/policies-resources-support-student-success