SPPH 400 (Distributed Learning) – Statistics for Health Research
Course Syllabus 2018

DAYS, TIMES, and LOCATION: All face-to-face meetings will be held on Fridays and Saturdays, from 8:30am-12:00pm, in room SPPH 143.

INSTRUCTOR: Mike Marin

EMAIL: mike.marin@ubc.ca

OFFICE: School of Population and Public Health, University of British Columbia
SPPH Room 263

OFFICE HOURS: Much of the course is completed from a distance and most office hours and such will take place on-line (we can also meet if you are on UBC campus). Further, a discussion forum on the course website will help with asking and answering questions.

TEACHING ASSISTANTS: The teaching assistant (TA) for this course will be introduced at the beginning of the course. The TA will offer on-line support throughout the course. They will also offer support for the statistical software R. They will assist in the grading of assignments. Scheduling of on-line office hours will be done within the first few weeks of the course, to be worked out between the students and the TA.

COURSE SCHEDULE: The schedule below is meant to help you pace your work in this course. We may deviate slightly from the schedule below, and please note that there is a separate document that outlines the assignment release and submission deadlines. Also, on-line I will give regular reminders of which material you should be reading over, between our face-to-face meetings. On the website, I’ve also posted the schedule for the TRADitional section of the course, so that you can see how the material is paced out in a more traditional offering. You are also welcome to attend any of the TRAD lectures that you like.

<table>
<thead>
<tr>
<th>Week Of</th>
<th>Mode</th>
<th>Topic</th>
<th>Assessment (Approximate Dates)</th>
<th>Rooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 4-10</td>
<td>In Person</td>
<td>Discuss Modules 2/3</td>
<td>Assignment #1 Given Out</td>
<td>Fri Sept 7 – SPPH 143 Sat Sept 8 – SPPH 143</td>
</tr>
<tr>
<td>Sept 11-17</td>
<td>On-line</td>
<td>Read Module 1, if necessary Read Module 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 18-24</td>
<td>On-line</td>
<td>Re-Read Module 2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 25-Oct 1</td>
<td>On-line</td>
<td>Re-Read Module 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 2-8</td>
<td>On-line</td>
<td>Read Modules 4/6</td>
<td>Assignment #2 Given Out</td>
<td></td>
</tr>
<tr>
<td>Oct 9-15</td>
<td>In Person</td>
<td>Discuss Modules 4/6 and Part of module 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 16-22</td>
<td>On-line</td>
<td>Read Module 6 and possibly Module 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 23-29</td>
<td>On-line</td>
<td>Re-Read Module 6</td>
<td>Assignment #3 Given Out</td>
<td></td>
</tr>
<tr>
<td>Oct 30-Nov 5</td>
<td>On-line</td>
<td>Read Module 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 6-12</td>
<td>On-line</td>
<td>Read Module 7</td>
<td>Assignment #4 Given Out</td>
<td></td>
</tr>
<tr>
<td>Nov 13-19</td>
<td>In Person</td>
<td>Discuss Modules 5/7</td>
<td></td>
<td>Fri Nov 16 – SPPH 143 Sat Nov 17 – SPPH 143</td>
</tr>
<tr>
<td>Nov 20-26</td>
<td>On-line</td>
<td>Re-Read Module 5, 7</td>
<td>Assignment #5 Given Out</td>
<td></td>
</tr>
<tr>
<td>Nov 27-Dec 3</td>
<td>On-line</td>
<td>Re-Read Course Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 4</td>
<td></td>
<td></td>
<td></td>
<td>Final Exam, date TBA</td>
</tr>
</tbody>
</table>

* Our face-to-face meetings take place on FR/SAT: Sept 7&8, Oct 12&13, Nov 16&17, each day at 8:30am-12:00pm
* Note that module 5 and 6 are reversed in order, and module 6 will be presented BEFORE module 5
* Note that we will share face-to-face days with SPPH 502 (us in the morning, 502 in the afternoon)
COURSE PHILOSOPHY AND OBJECTIVES:

This course will introduce students to basic statistical methodology used in health research. By the end of this course, students will be able to:

1. Choose and create effective graphical, tabular, and numerical summaries of univariate and bivariate data.

2. Distinguish between basic methods for selecting samples and understand the impact of the sampling method on the choice of statistical analysis and generalizability of results.

3. Identify commonly used basic statistical methods and the circumstances under which their use is appropriate.

4. Understand the notion of sampling variability and sampling distributions.

5. Calculate and interpret confidence intervals and p-values and understand their limitations.

6. Select and carry out an appropriate method of analysis to compare the means or proportions of two or more populations, and provide an interpretation of the results of such an analysis.

7. Conduct simple linear regression analyses, assess their validity, and interpret the results. Understand the extension of these ideas to multiple linear regression.

8. Recognize situations where the opinion of an experienced statistician is required.

Greater emphasis will be placed on conceptual understanding with relatively less emphasis on computational ability. For example, recognizing that a "paired t-test" is the appropriate method of analysis in a given situation would be worth more than the calculations associated with conducting the test. Correspondingly, applying an "independent sample t-test" when it is inappropriate will receive little or no credit, even if the computations are done correctly.

PREREQUISITE:

No previous courses in statistics or previous computing experience are required. However, students will be expected to be familiar with algebra (intermediate level) and simple graphing techniques. Further, it will be assumed that you are familiar with the material covered in the Module 1 notes.

RECOMMENDED COURSE TEXTBOOK:

This text provides fairly good explanations for most of the main ideas of the course. Some of the topics will be covered in greater depth during the lectures, tutorials and in the provided set of course notes. Purchase of the textbook is optional.

SOME ADDITIONAL REFERENCE TEXTS:

5. The Cambridge Dictionary of Statistics in the Medical Sciences B.S. Everitt

6. Modern Applied Statistics with S by Venables and Ripley

EQUIPMENT REQUIREMENTS:

A calculator (preferably with some statistical functions) will be required for examinations. It is recommended that you download a free copy of R and RStudio for your personal computer.

STATISTICAL COMPUTING:

In the course, you are welcome to use any statistical software you like or are familiar with, although R will be the main software used in the course. Lectures will present R code/output, and for exams you will be expected to be familiar with interpreting statistical output from R.

I have created a set of video tutorials to teach the use of R. These videos start right form the beginning with installing the software, and assume no familiarity with R or with programming in general. While the video tutorials are general in nature, they are intended to serve this course. You can find the videos by searching “MarinStatsLectures” on YouTube, or by going to the URL listed below. Make sure to subscribe to my YouTube channel to have access to all videos in a neat and organized fashion.

http://www.youtube.com/marinstatlectures

If you would like to try working with SAS instead, you can check out the following link for some help with this (we will be able to provide limited support for SAS)

https://www.popdata.bc.ca/etu/onlinecourses/STAN101

COURSE EVALUATION:

5 Assignments 30%
1 Midterm Test 30%
Final Examination: 40%

ASSIGNMENTS:

The assignments are designed to help students master the concepts presented in class and gain experience in applied data analysis and interpretation, and are formative in nature. Students are encouraged to discuss the assignment and share their ideas, but work must be completed and submitted individually. Each student is expected to submit his or her own original solutions.
• We will be working with an online homework system, which will be introduced in class. Many answers will be directly submitted to the system online. Other portions of your assignment will be written up and submitted in person.

• Through the online homework system, you will get your own personal set of data that will be worked on over the duration of the course. Your variables will be the same as others, but your actual data and observed values will differ from your classmates.

• Assignments should be neatly written (or typed). This is not a thesis, but it should still look like something you are proud to have your name on. Some marks will be allocated to clarity of presentation.

• Make sure your approach to a problem is clearly outlined and explained, when possible. A clear explanation of what you are doing and why is more important than any numerical answer you provide.

• When preparing solutions related to data analysis, include only those parts of the computer output that are relevant to your answer and highlight or underline the specific items of interest. Alternatively, transcribe those items to another page if you prefer. Do NOT include every piece of information from software output...you must select what is relevant to include.

Dates for the assignment are provided in a separate document.

MID-TERM TESTS AND FINAL EXAMINATION:

The midterm and final can be written at a distance, with an arranged invigilator. This person should be someone in a position of authority and whose identity can be verified. If in doubt, just ask me if the individual you are considering is suitable. It is a good idea to start considering possible invigilators early in the term. Also, for those in or around Vancouver, I will arrange a date to come in and write the exams if that is preferable for those individuals.

Books may not be used during tests or exams. Students may bring a formula sheet with any relevant formulas or properties written on it. Statistical tables, when necessary, will be provided with exams.

COURSE NOTES:

A set of course notes I have written will be posted on the website for you. You can print or save a copy for yourself. It is a good idea to read these prior to lectures, and to bring a copy with you to class. These notes are detailed, and more of a textbook, rather than a set of lecture slides.

Course Topics:

The course is broken down into a set of 8 modules. Each module contains ideas that fit together, at least to some extent, and most modules build on the ideas presented in previous modules. **Modules 1 and the first half of 2 will NOT be covered in lectures.** The notes for modules 1 and part of 2 are provided so that you may refresh on this material, if necessary. Material in modules 1 and 2 will we reviewed in the Stats Prep Course. In SPPH 400, we will begin with the Normal distribution (page 39 of module 2 notes).
Module 1 – Samples:

- Summary of univariate data using numerical and graphical methods. Measures of location and dispersion. The standard deviation used as a unit of measurement.
- Summary of bivariate data using graphical methods.
- Methods of sampling and types of bias.
- Data collection and management.

Module 2 – Probability and Probability Distributions:

- Probability trees, Bayes’ Theorem. Diagnostic tests: sensitivity, specificity, positive predictive value, negative predictive value, false positive, false negative and prevalence.
- Random variables. Mean and standard deviation of a random variable.
- Common probability distributions for discrete random variables: Binomial and Poisson.
- Linear transformations of random variables, and the properties of the mean and variance
- Introduction to continuous probability distributions. The normal distribution, standardizing, and properties of the normal distribution. Chebychev’s inequality.
- The Central Limit Theorem, and the sampling distribution of a mean/proportion.
- Normal approximation to the Binomial and the Poisson.

Module 3 – Confidence Intervals and Hypothesis Tests:

- The role of a sampling distribution in statistical inference
- Student’s t-distribution. Estimation, one and two sided confidence intervals and the underlying logic behind a confidence interval
- One and two-sided hypothesis testing, definition and limitations of p-values.
- Brief mention of Bayesian methods
- Statistical vs. scientific significance
- Types of errors, power and sample size calculations

Module 4 – Types of Variables and Hypothesis Tests:

- Definition of bivariate data, outcome and explanatory variables
- Parametric vs. non-parametric tests
- Appropriate statistical methods for the type of outcome variable you want to analyze

Module 5 – Statistical Inference for a Continuous Outcome and Qualitative Explanatory:

- Dependent populations: The paired t-test, repeated measures ANOVA. Non-parametric tests: Wilcoxon signed-rank test, Friedman’s test.
• Brief discussion of two-way ANOVA, and randomized block designs

Module 6 – Statistical Inference for two qualitative variables:

• Analysis of 2x2 tables: The Chi-square test of independence, and Fisher’s exact test.
• McNemar’s test for paired data.
• Measures of association for 2x2 tables: Risk difference and the number needed to treat, relative risk (risk ratio), odds ratios, confidence intervals for odds ratios.
• Brief discussion of the two proportions hypothesis testing

Module 7 – Statistical Inference for two quantitative variables:

• Pearson’s and Spearman’s correlation
• Simple linear regression. Interpretations and tests for model parameters.
• Model assumptions and regression diagnostics

Module 8 – Multiple Linear Regression and Extensions:

• Discussion of multiple linear regression
• The idea of ‘adjusting’ for other variables in a regression model
• Extensions of the linear model for different types of outcome variables (logistic, Poisson and Cox regression)