School of Population and Public Health
SPPH 503 – Epidemiologic methods II
January to April 2019

Time: Tuesday, 1330 – 1630
Location: School of Population and Public Health, UBC

Course description
Students will be introduced to a worldview that identifies the role of epidemiologic methods in medical research at the clinical and community levels (the term ‘medical’ is used to describe the aggregate of disciplines concerned with illness in humans). The philosophy of inference will be a core consideration and topics covered will include study design, the meaning of p values and confidence intervals, biases, confounding and adjustment, effect modification, Frequentist versus Bayesian inference and issues related to generalizability. Subsequent sessions will focus on diagnostic, prognostic and etiognostic research. Each topic will be introduced at the basic level and progress to a second level re-examination of the issues.

Course philosophy
The classroom provides a forum where reason and evidence are presented by the instructor in order to enable students to reach an understanding on any particular topic. Although the inferences that students reach need not mirror those of the instructor, the requirement to support one’s position with logic/reason and evidence is an important aspect of the course philosophy.

Students in any class comprise a heterogeneous group in terms of learning abilities and learning needs. All student needs will be respected by presenting topics at the basic level before proceeding to a second or third level re-examination of the issues.

Teaching goals and strategies
Students learn best when they are engaged through a process that is both instructive and intellectually entertaining. The course strategy for achieving this involves the discussion of thought provoking ideas, with illustrations and pertinent examples from the contemporary literature. This strategy also includes challenging, though not necessarily time consuming, assignments.

Course objectives
The objectives of the course are to help students gain an understanding of
1. The philosophy of inference.
2. How epidemiologic research can directly add to the knowledge base of scientific medicine.

Reading list
Course notes will be provided at each session. Additional reading may be listed in the reference section of the course notes.
Recommended (but not required) texts

Pre-requisites
SPPH 502 (Introduction to Epidemiology)
SPPH 400 (Statistics for Health Research)

Method of evaluation
Assignments 20%; mid-term test (40%) and end of term test (40%).
The tests will consists of multiple choice or short answer type questions. Some questions will seek to elicit information on fundamental concepts, while other questions will probe the student’s understanding of the finer points covered in the course. Two examples of potential exam questions are listed below along with the Instructors version of the answers:

Question 1. What purpose(s) do the inclusion and exclusion criteria in a randomized trial serve?

a) inclusion criteria

Answer: Inclusion criteria define the domain within which the question regarding drug (therapy) efficacy is to be answered. They ensure that the study has conceptual and practical meaning in terms of answering the question posed at the outset of the clinical trial.

b) exclusion criteria

Exclusion criteria are typically used to prevent the recruitment of subjects who may interfere with the study’s conduct from an efficacy or safety standpoint. For example, exclusion criteria exclude those who may be hurt through idiosyncratic or other reactions, those who will add “noise” to the study by having the primary outcome through mechanisms not directly related to the study question and those who are likely to be non-compliant with study protocol.

Question 2: A particular technique for measuring the height of a mountain is deployed and 100 readings give a mean height for the mountain as 5,540 meters, SD=30 m, 95% confidence interval= 5,534 to 5,546 m. Which of the following statements is true?

a) The true height of the mountain must be between 5,534 and 5,546 m.
b) The true height has a 95% probability of being between 5,534 and 5,546 m.
c) There is a 95% probability that the range 5,534 to 5,546 m contains the true height of the mountain.
d) The true height of the mountain is either between 5,534 and 5,546 m or it is not.
e) Approximately 95 of the 100 of the measurements made must have fallen between 5,480 and 5,600.
f) If we were to repeat the 100 measurements and calculate the mean and 95% CI over and over again we would still not know the true height of the mountain with certainty.
g) If we were to repeat the 100 measurements and calculate the mean and 95% CI over and over again (based on 100 measurements each) approximately 95% of the CIs we calculated would contain the true height of the mountain but we would not know which.

Answer: c, d, e, f, and g. Please refer to course notes for details.
Teaching assistant
Weiran Yuchi
Email: weiran.yuchi@ubc.ca

Course instructor
K.S. Joseph MD, PhD (primary instructor)
Professor
Department of Obstetrics & Gynaecology
School of Population and Public Health
University of British Columbia and the
Children’s and Women’s Hospital of British Columbia
Tel: 604-875-2000 ext 4811 E-mail: ksjoseph@bcchr.ca

Topics to be addressed
1. Science, medicine and epidemiology
 Definition of medicine
 Classification of medical disciplines
 Clinical
 Community
 The art and science of medicine
 Essence of the art of medicine
 Public health
 Types of medical research
 Types of knowledge (general, particular)
 Scientific medicine, medical professionalism
 Foundation of scientific medicine
 Epidemiologic research
 Role of statistics
 Evidence-based medicine versus knowledge-based medicine
 The subjective nature of inference and the inter-subjective nature of knowledge
 Critical thinking

2. Epidemiologic study design
 Types of epidemiologic studies
 Cohort
 Case-control
 Cross-sectional
 Indices of disease frequency
 Incidence vs prevalence
 Proportion type rates
 Density type rates
 Rate ratios
 Rate differences
 Odds ratios
Epidemiologic study design - the axes for categorization
Directionality
Timing
Sample selection
Study design revisited
Cohort vs case-control studies
Cohort vs dynamic population
Survival analysis
Actuarial
Kaplan-Meier

3. Clinical trials
Features of a clinical trial: conceptual sequence
Equipoise
Framing the question
Inclusion and exclusion criteria
Assurance of validity
Randomization
Stratification (and blocking)
Blinding (differential co-intervention/information)
Intention-to-treat principle
Assurance of relevance
Compliance, crossover
Clinical algorithms and decision nodes
Issues related to generalizability
Conflicting imperatives
Status of the randomized trial

4. Bias in epidemiologic studies
Types of bias
Selection bias
Information bias
Confounding
Definition, conditions for confounding and types
Addressing confounding
Prevention through design
Restriction and stratification
Matching
Adjustment during analysis
External weighting schemes (direct and indirect standardization)
Internal weighting schemes (M-H, inverse of variance)
Studies of intended vs unintended effects
Confounding by indication
Confounding by contraindication
Residual confounding

5. Effect-modification and miscellaneous topics
 Effect modification
 Bias towards the null
 Cohort effect
 Regression to the mean
 Ecologic fallacy
 Choice of study population
 Clusters
 Publication bias and detection

6. Case-control studies
 Historical note
 The cohort vs case-control dichotomy
 Cohort vs dynamic populations
 Case-referent studies
 Primary study base, secondary scheme for case-ascertainment
 Primary scheme for case ascertainment, secondary study base
 Ensuring comparability of information
 Time issues related to determinant effects
 Etiognostic probability

7. P values and 95% confidence intervals
 The logic of statistical inference: a clinical analogy
 Statistical (Frequentist) inference
 Parametric tests
 Non-Parametric tests
 P values
 Confidence intervals
 P values vs confidence intervals
 Interpreting 95% Confidence intervals in terms of P values
 Clinical significance vs statistical significance
 P values and 95% confidence intervals from small versus large studies
 P value functions

8. Frequentist versus Bayesian approaches to inference
 Frequentist theory continued
 Optimization of study size
 Multiple hypothesis testing
 Sequential/repeated testing, interim analyses in clinical trials
 Data generated vs hypothesis driven P values
Subgroup analyses in clinical trials
Bias vs chance
P value function
Bayesian inference
Prior probability, likelihood ratio and posterior probability
Subjective vs objective inference
Prior belief
Study data as the likelihood ratio
Implications for study size, multiple hypothesis testing, etc

9. **Introduction to diagnosis**
 Indices of validity
 Sensitivity
 Specificity
 Clinically relevant indices
 Positive predictive value
 Negative predictive value
 Prevalence dependence of predictive values
 Receiver Operating Characteristic curves
 Likelihood ratios
 Bayes theorem
 Sequential application of Bayes theorem
 Problems with the sequential application of Bayes theorem

10. **Regression modeling for diagnosis and prognosis**
 General linear models
 Multiple linear regression
 Generalized linear models
 Log linear regression
 Logistic regression
 Cox proportional hazards regression
 Choice of model
 Designing variables from determinants
 Indicator variables
 Multinomial or ordinal determinants
 Determinants measured on a continuous scale
 Effect modification
 Model building
 Creating prevalence functions (for diagnosis/prognosis)
 Creating scoring systems for (for diagnosis/prognosis)
 Misguided focus on single predictors

11. **Causal models versus predictive models**
Form and function
Criteria for causality
Features of a causal model
Features of predictive models
Assessing performance of predictive models
 Calibration ability
 Stratification capacity
 Classification accuracy

12. Causal diagrams

13. Publication, validation and contribution to science
 Practical issues
 General issues
 Authorship
 Choice of journal
 Status of peer review
 Determinants of success
 Publication and validation
 Contribution to science
 Citation
 Impact factors
 Sociology of science
 Normal science, paradigm shift
 Mathew effect
 Medawar’s curve
 Open access publishing
 Future directions