Course Description
This course provides a theoretical and practical foundation for health care systems research and evaluation. The theory will cover how we think about the performance of health care systems and how the relevant concepts of performance (e.g., quality, continuity) might be measured. The practical part of the course will cover the use of administrative data to conduct health care systems research, in particular to develop variables that represent the concepts of interest using SAS. This course also provides an overview of ethics and privacy issues related to research uses of administrative data.

This course uses a problem-based learning approach to introduce students to the evaluation of health care systems. Each week of the course will build on the last. This course is not specifically about health care system policies or health research study design / statistical methods. The material covered here will be complementary to other SPPH courses, building health services research competencies such as knowledge of health care system frameworks, critical and analytic thinking, and skills in quantitative analysis.

This course is open to any student who is interested in working with administrative data. It is aimed most directly at students who anticipate research careers in areas related to health care services and systems, including health services research and health policy / program evaluation.

There are no prerequisites for this course, but it is intended to be a 2nd (or subsequent) (graduate-level) year course.

Purpose and Objectives:
Upon completion of this course, you will be able to:

1. Understand, describe, and use basic concepts in health system analysis
2. Identify and apply health system classification terminology and concepts
3. Articulate privacy issues and protections as they relate to the analysis of administrative health data for research purposes
4. Develop an actionable plan for creating an algorithm to use administrative data to measure a concept related to health system performance
5. Create comprehensive documentation for your algorithm that aids both replicability and use of that algorithm
6. Use SAS software for relatively complex data management tasks
7. Use SAS for (relatively simple) data analysis
8. Troubleshoot, test and interpret findings
9. Present findings showing the policy relevance of your research

Attaining Course Competencies:

The course competencies will be attained in five ways: readings, video resources, lecture, class discussion and student writing / project(s). Reviewing required material prior to each class

Winter Term 2017
is a critical part of successful learning and effective class participation. To aid in directed reading of the course material, we will discuss the purpose of next week’s readings at the end of each class session. The ongoing student projects are meant to assist with developing both theoretical and practical knowledge. Students are expected to use their project work as a means to explore the application of theories and concepts they are learning and to provide a basis for class participation.

Instructor:

Kimberlyn McGrail, PhD, Associate Professor (School of Population and Public Health), Faculty (Centre for Health Services and Policy Research): 201-2206 East Mall.
778-998-3821 | kmgrail@chspr.ubc.ca | Office hours by appointment

Class Time & Location: Tuesdays 9am-noon, SPPH Room B138. Class will start promptly at 9am, and students are expected to attend (except under extenuating circumstances) and to arrive on time.

Evaluation

Privacy test: required but not counted towards marks

Framework presentation 10%
Proposed algorithm 10%
Metadata 10%
Student topic presentation 20%
Flowchart part 1: Proposed flowchart 5%
Flowchart part 2: Completed flowchart + SAS code 20%
Final paper / presentation on chosen health system topic 25%

There will be penalties for assignments submitted late. Typically the penalty will be 10% per day. Extensions of the due date for the written assignments will be considered pending extenuating circumstances. Assignments are to be emailed / submitted on the SRTL by midnight on the designated due date.

Students are expected to know what constitutes plagiarism, to understand that plagiarism is a form of academic misconduct, and that such misconduct is subject to penalty. Please review the Student Discipline section of the UBC Calendar (available on on-line at www.ubc.ca).

Please note: The course outline and readings are in draft and are subject to change. They will in fact almost certainly change at least somewhat, as this is intended as a Problem Based Learning course, so the flow over the term will to some degree be directed by the participants.

Winter Term 2017
Class Schedule

<table>
<thead>
<tr>
<th>Week #</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 3</td>
<td>Introduction to the course and setting out the “problem”/ Discussion of Week 2 assignment</td>
</tr>
<tr>
<td>2</td>
<td>Jan 10</td>
<td>Key concepts in evaluating health care system performance / emergent properties / Population Data BC</td>
</tr>
</tbody>
</table>
| 3 | Jan 17 | Frameworks for health system analysis and development of algorithm topics
Graded assignment 1 due – Framework presentation |
| 4 | Jan 24 | Introduction to linked administrative data / privacy and ethics / introduction to the Secure Research Environment (SRE) |
| 5 | Jan 31 | Preparing metadata / SAS intro and basic commands (Modules 1 & 2)
Graded assignment 2 due – Proposed algorithm |
| 6 | Feb 7 | Student topics, part 1 / SAS intermediate commands, debugging programs (Modules 3 & 4) |
| 7 | Feb 14 | Student topics, part 2 / SAS intermediate statistics / variable attributes (Modules 5 & 6)
Graded assignment 3 due – Metadata |
| 8 | Feb 28 | Student topics, part 3 / SAS intermediate data management / combining data sets (Module 7 & 8)
Graded assignment 4 due – Proposed flowchart |
| 9 | Mar 7 | Student topics, part 4 / stratification and sensitivity |
| 10 | Mar 14 | Student topics, part 5 / SAS review, trouble-shooting, student led questions |
| 11 | Mar 21 | Macros / reading raw data into SAS
Graded assignment 5 due – Completed flowchart and SAS code |
| 12 | Mar 28 | Student presentations summarizing what we’ve learned individually / putting it all together |
| 13 | April 4 | TO BE DISCUSSED
Final paper due Monday morning following the last class |

Week 1: Introduction to the course
During the first class session we will:
- Have class introductions, to people and resources
• Review the syllabus and administrative issues
• Discuss grading and grading criteria
• Establish the overarching problem / question the course will try to address

ADDITIONAL RESOURCES (RECOMMENDED READING)

A TEDx talk by Dr. Bill Ghali from Alberta on the “crisis” in health care performance: https://www.youtube.com/watch?v=UNs_eH6Z4ps

Week 2: Concepts and theories in health care systems research; emergent properties

By the end of this week, students will be able to:

• Articulate the major concepts around health system performance
• Provide examples of emergent properties as they relate to health system performance
• Read required information and complete PopData privacy training

READINGS and RESOURCES

Ian Sommerville. Emergent properties of sociotechnical systems. http://www.youtube.com/watch?v=ZCBaQpEq1U8

PRIVACY TEST: Review privacy material provided by PopData, and take the PopData test. Must pass with a score of 80% or higher before continuing.

Submit: On-line, automatic submission once the privacy test is completed. The test and access to it will only be available after you have read through the privacy information provided on this site: https://portal.popdata.bc.ca/static/privacy/privacyhome.html

Description/Instructions:

You will need a login and password in order to complete the test. This will be emailed to you by PopData staff. If you do not have this information, please let me know. You will receive a score immediately, and PopData will report the score to the course instructor as well.
Grading Criteria: Automatic, generated by the PopData website, based on answers to multiple-choice questions.

Week 3: Frameworks for health system analysis and development of research questions

- Various frameworks for health systems analysis / performance (e.g. CIHI, OECD)
- What the frameworks address; how they are organized
- What is the level of analysis? What do they cover and not cover?
- Do these frameworks appear complete? Suitable for a Canadian environment?
- Are they theoretical or practical?
- What makes a “good” health care system performance /analysis framework?

Graded assignment 1 – Framework presentation

Each student will be responsible for all required readings, and then will take particular responsibility for leading the discussion on one framework. This will include summarizing the main points, relating the framework to other approaches, and relating the framework back to the required readings. Grading rubric will be provided on the first day of class.

READINGS - FRAMEWORKS FOR DISCUSSION

ADDITIONAL RESOURCES (RECOMMENDED READING)

http://www.who.int/bulletin/archives/78(6)/717.pdf

1. OECD.StatExtracts: Health. URL:
http://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT (specific focus on pages 6-16)

Week 4: Introduction to linked administrative data / emergent properties / Introduction to the Secure Research Environment (SRE)

By the end of this week, students will be able to:

- Describe administrative data, identify sources of administrative data, and describe appropriate research uses of these data
- Describe data linkage methods, review data linkage systems around the world, and introduce Population Data BC
- Review and understand ethical issues in the use of administrative data
- Understand both what the Secure Research Environment is and how to use it

READINGS:

Population Data BC website, including the Overview video and Data Linkage sections:
http://www.popdata.bc.ca/aboutus

Canadian Standards Association Model Code for Protection of Personal Information

Tri-Council Policy Statement: Ethical conduct for research involving humans, chapters other than 1 & 5:

Panel on Research Ethics tutorial on the Tri-Council policy statement referred to above. This will be very useful for people who want more in-depth information on research involving human subjects. It is required for students who wish to conduct research at a University.
http://www.pre.ethics.gc.ca/english/tutorial/

Additional Resources

Winter Term 2017
Week 5: Preparing metadata / Introduction to SAS

By the end of this week students will be able to:

- Develop metadata describing the data set needed to create their proposed algorithm
- Use the SAS interface and issue basic SAS commands
- Complete assignment due before the start of class week 6 (Metadata)

READINGS / ON-LINE RESOURCES

For the rest of the term we will be asking you to view videos and read material prior to attending class. The videos are part of an on-line learning resources established by Population Data BC, which is here: https://my.popdata.bc.ca/ → Login → Education & Training tab → Statistical Analysis, STAN 101 SAS Tutorials

For this week: STAN 101 Modules 1 and 2

Week 6: Student topics part 1 / SAS intermediate commands and debugging

Learning objectives:
- More facility with SAS!

Readings / class prep

STAN 101 Modules 3 & 4

Review / use SAS learning activities (on SRTL under course_files)

Week 7: Student topics, part 2 / SAS intermediate statistics / variable attributes

READINGS / ON-LINE RESOURCES

STAN 101 Modules 5 & 6

Review / use SAS learning activities (on SRTL under course_files)

Week 8: Student topics, part 3 / SAS intermediate data management / combining data sets

READINGS / ON-LINE RESOURCES

Winter Term 2017
STAN 101 Modules 7 & 8

Review / use SAS learning activities (on SRTL under course_files)

Week 9: Student topics, part 4 / SAS review, troubleshooting and macros

READINGS / ON-LINE RESOURCES

Review / use SAS learning activities (on SRTL under course_files)

Week 10: Student topics, part 5 / Univariate statistics / stratification and sensitivity analyses

Week 11: Descriptive statistics / preliminary findings / writing up methods and results

Week 12: Student presentations summarizing what we’ve learned individually / Putting it all together – learning across projects for the system as a whole

By the end of this week students will:

- Have a much deeper understanding of several concepts that relate to health care system performance
- Feel comfortable engaging in debates about health care system performance – both how it is measured and how Canada fares
- Reflect on our chosen conceptual framework and comment on similarity / differences in interpretation of performance depending on the concept involved

Final paper / presentation

Part of your grade for the final presentation (5% of your overall course mark) will be based on the slides / material and presentation of your topic provided in the final class session. The rest of this grade (20% of your overall course mark) will be based on a summary of your findings written in the style of an academic paper. The format and grading rubrics for these will be provided well in advance of the due dates. This will be due by 9am of the Monday following the last week of classes.

Course Evaluation

You will receive a link to a course evaluation at the end of the semester. Your responses will be anonymous, with feedback provided in the aggregate after all grades for the course are submitted. Open-ended comments will be shared with instructors, but not identified with individual students. Your participation in course evaluation is an expectation, since providing constructive feedback is
a professional obligation. Feedback is critical, moreover, to improving the quality of our courses, as well as for instructor assessment.

Optional SAS Resources

• SAS e-learning tutorials (https://support.sas.com/edu/viewmyelearn.html):
 SAS(R) Programming Introduction: Basic Concepts
 Chapter 1: Getting Started with SAS Programming
 Chapter 2: Understanding SAS Programming Basics
 Chapter 3: Navigating and Using the SAS Interface
 Chapter 4: Working with SAS Libraries, Data Sets and the Import Wizard
 SAS(R) Programming 1: Essentials
 Chapter 1: Getting Started with SAS Programming
 Chapter 2: Navigating and Using the SAS Interface
 Chapter 3: Working with SAS Code
 Chapter 4: Working with SAS Libraries and SAS Data Sets

• SAS tutorial, accessed in SAS from the Help menu, select Getting Started with SAS Software, then select New SAS programmer (quick-start guide).

• Online SAS documentation at: http://support.sas.com/onlinedoc/913/docMainpage.jsp

• UCLA Resources to help you learn and use SAS: http://www.ats.ucla.edu/stat/sas/

• MCHP Resources to help you learn and use SAS:
 http://umanitoba.ca/faculties/medicine/units/community_health_sciences/departmental_units/mchp/education/sas/index.html